AAPP | Atti della Accademia Peloritana dei Pericolanti Classe di Scienze Fisiche, Matematiche e Naturali ISSN 1825-1242

Vol. LXXXVIII, No. 2, C1A1002004 (2010)

BUFFON TYPE PROBLEMS WITH MULTIPLE INTERSECTIONS FOR REGULAR LATTICES

Vittoria Bonanzinga ${ }^{a *}$ And Loredana Sorrenti ${ }^{a}$

Abstract

In this paper we study Buffon type problems with multiple intersections for lattices of equilateral triangles and a circle as test body.

1. Introduction

In papers [1] and [2] A. Duma and M. Stoka studied Buffon type problems with multiple intersections for lattices of the Euclidian plane \mathbf{E}_{2}, with a parallelogram \mathcal{P} and an equilateral triangle τ, elementary tile respectively, and a segment of constant length.

In this paper, we consider two lattices, \mathcal{R}_{1} and \mathcal{R}_{2}, with the same fundamental cell, an equilateral triangle τ of side a. Hence, we determine the probability of multiple intersections of the test body, a circle of constant radius r with the sides of the lattices \mathcal{R}_{1} and \mathcal{R}_{2}, respectively.

2. Geometric probability of multiple intersections for the lattice \mathcal{R}_{1}

Considering the lattice \mathcal{R}_{1}, we denote by $p_{1 i},(i=1,2, \ldots, 6)$ the probability that the body test intersects the sides of the lattice i-times.

Theorem 1. If $r<a \frac{\sqrt{3}}{6}$, the probabilities that a circle \boldsymbol{C} of constant radius r, uniformly distributed in a bounded region of the plane, intersects, the sides of the lattice \mathcal{R}_{1}, i-times, ($i=1, \ldots, 6$), are respectively

$$
\begin{gather*}
p_{11}=p_{13}=p_{15}=0 \tag{1}\\
p_{12}=\frac{12}{\sqrt{3}} \frac{r}{a}-20\left(\frac{r}{a}\right)^{2} \tag{2}\\
p_{14}=p_{16}=4 \frac{r^{2}}{a^{2}} \tag{3}
\end{gather*}
$$

Figure 1.

Proof. We denote by \mathcal{M} the set of circles of radius r with center $C(x, y)$ which belongs to τ. Then, as in figure 2, the test body intersects the sides of the triangles $\tau \mathrm{i}$-times, ($\mathrm{i}=1, \ldots$, 6), (i. e. the sides of the lattice \mathcal{R}_{1}), if and only if, $C \in \tau_{1 i}, i=1, \ldots, 6$. Hence, putting $\mathcal{N}_{1 i}=\left\{(x, y) \in \tau_{1 i}\right\},(\mathrm{i}=1, \ldots, 6)$, we have

$$
\begin{equation*}
p_{1 i=} \frac{\mu\left(\mathcal{N}_{1 i}\right)}{\mu(\mathcal{M})},(i=1, \ldots, 6) \tag{4}
\end{equation*}
$$

where μ is the Lebesgue measure in the Euclidean plane. We can compute the previous measures using the elementary kinematic measure of Poincaré ([4])

$$
d K=d x \wedge d y \wedge d \varphi
$$

where x and y are the coordinates of the center of \mathbf{C} (or the components of a translation) and φ is the angle of rotation. We have

$$
\begin{equation*}
\mu(\mathcal{M})=\operatorname{area} \tau=\frac{a^{2} \sqrt{3}}{4} \tag{5}
\end{equation*}
$$

Figure 2.

We compute $\mu\left(\mathcal{N}_{12}\right)$ observing that τ_{12} is union of three congruent trapeziums with bases of lengths $a-\frac{4 r}{\sqrt{3}}$ and $a-\frac{6 r}{\sqrt{3}}$ and height r. Then

$$
\begin{equation*}
\mu\left(\mathcal{N}_{12}\right)=\text { area } \tau_{12}=3 a r-\frac{15}{\sqrt{3}} r^{2} \tag{6}
\end{equation*}
$$

The sets τ_{14} and τ_{16} are the union of three congruent equilateral triangles of side $\frac{2 r}{\sqrt{3}}$, therefore

$$
\begin{equation*}
\mu\left(\mathcal{N}_{14}\right)=\mu\left(\mathcal{N}_{16}\right)=\operatorname{area} \tau_{14}=\operatorname{area} \tau_{16}=r^{2} \sqrt{3} \tag{7}
\end{equation*}
$$

We observe that the circle never intersects once, three times or five times the sides of the lattice \mathcal{R}_{1}. From formulas (4), (5), (6) and (7) we have the probabilities (1), (2) and (3).

Considering the lattice \mathcal{R}_{1}, we denote by $p l_{1 i},(i=1,2, \ldots, 6)$ the probability that the test body intersects $\mathrm{i}(\mathrm{i}=1, \ldots, 6)$ sides of the lattice.

Theorem 2. If $r<a \frac{\sqrt{3}}{6}$, the probabilities that a circle \boldsymbol{C} of constant radius r, uniformly distributed in a bounded region of the plane, intersects, i sides ($i=1, \ldots, 6$), of the lattice \mathcal{R}_{1} are respectively

Figure 3.

$$
\begin{gather*}
p l_{11}=\frac{12}{\sqrt{3}} \frac{r}{a}-20\left(\frac{r}{a}\right)^{2}, \tag{8}\\
p l_{12}=4 \frac{r^{2}}{a^{2}} \tag{9}\\
p l_{13}=\left(4-\frac{2 \pi}{\sqrt{3}}\right)\left(\frac{r}{a}\right)^{2} \tag{10}\\
p l_{14}=p l_{15}=0 \tag{11}\\
p l_{16}=\frac{2 \pi}{\sqrt{3}} \frac{r^{2}}{a^{2}} . \tag{12}
\end{gather*}
$$

Proof. With the same notations as in the previous theorem, as in figure 3, the test body intersects i sides ($\mathrm{i}=1, \ldots, 6$) of the lattice \mathcal{R}_{1} if, and only if, $C \in \tau l_{1 i}, i=1, \ldots, 6$. Hence, putting $\mathcal{N}_{1 i}=\left\{(x, y) \in \tau l_{1 i}\right\},(\mathrm{i}=1, \ldots, 6)$, we have

$$
\begin{equation*}
p l_{1 i=} \frac{\mu\left(\mathcal{N}_{1 i}\right)}{\mu(\mathcal{M})},(i=1, \ldots, 6) \tag{13}
\end{equation*}
$$

We compute $\mu\left(\mathcal{N}_{13}\right)$ observing that τl_{13} is the union of three congruent surfaces, given as the difference between the area of an equilateral triangle of side $\frac{2 r}{\sqrt{3}}$ and the area of the
circular sector of radius r and angle $\frac{\pi}{3}$, therefore

$$
\begin{equation*}
\mu\left(\mathcal{N}_{13}\right)=\text { area } \tau l_{13}=r^{2} \sqrt{3}-\frac{\pi}{2} r^{2} \tag{14}
\end{equation*}
$$

The sets τl_{16} are the union of three congruent circular sectors of radius r and angle $\frac{\pi}{3}$. Then

$$
\begin{equation*}
\mu\left(\mathcal{N}_{16}\right)=\text { area } \tau l_{16}=\frac{\pi}{2} r^{2} \tag{15}
\end{equation*}
$$

We observe that the circle never intersects four or five sides of the lattice \mathcal{R}_{1}, hence (11) follows. Since $p l_{11}=p_{12}, p l_{12}=p_{14}$ and from formulas (13), (14) and (15), we have the probabilities (8), (9), (10), (11) and (12).

Corollary 3. The probability that a circle \boldsymbol{C} of constant radius $r<a \frac{\sqrt{3}}{6}$ intersects one of the sides of the lattice \mathcal{R}_{1} is

$$
\begin{equation*}
p=\frac{12}{\sqrt{3}} \frac{r}{a}-12\left(\frac{r}{a}\right)^{2} \tag{16}
\end{equation*}
$$

Proof. Taking into account that $p=p l_{11}+p l_{12}+p l_{13}+p l_{14}+p l_{15}+p l_{16}$, formulas (8), (9), (10), (11) and (12) give the probability (16).

Remark Applying formula

$$
\begin{equation*}
p_{3 ; a, \alpha}=4 \frac{1+\cos \alpha}{\sin \alpha} \frac{r}{a}-4\left(\frac{1+\cos \alpha}{\sin \alpha}\right)^{2}\left(\frac{r}{a}\right)^{2} \tag{17}
\end{equation*}
$$

of the probability that a circle of constant radius r, uniformly distributed in a bounded region of the plane, intersects a straight line of the lattice $\mathcal{R}_{3 ; a, \alpha}$ of lines, having an isosceles triangle as elementary tile with basis of length a and angles α, α and $\pi-2 \alpha$, [3] with $\alpha=\frac{\pi}{3}$, we obtain (16).
3. Geometric probability of multiple intersections for the lattice \mathcal{R}_{2}

Now we consider the lattice \mathcal{R}_{2} and we denote by $p_{2 i},(i=1,2,3,4)$ the probability that the test body intersects the sides of the lattice i-times.

Theorem 4. If $r<a \frac{\sqrt{3}}{6}$, the probabilities that a circle \boldsymbol{C} of constant radius r, uniformly distributed in a bounded region of the plane, intersects, the sides of the lattice \mathcal{R}_{2}, i-times, ($i=1,2,3,4$), are respectively

$$
\begin{gather*}
p_{21}=p_{23}=0 \tag{18}\\
p_{22}=4 \sqrt{3} \frac{r}{a}-\left(20+\frac{2 \sqrt{3} \pi}{3}\right)\left(\frac{r}{a}\right)^{2} \tag{19}\\
p_{24}=\left(8+\frac{2 \pi \sqrt{3}}{3}\right)\left(\frac{r}{a}\right)^{2} \tag{20}
\end{gather*}
$$

Proof. With the same notations as theorem 1, as in figure 4, the test body intersects the sides of the lattice $\mathcal{R}_{2} i$-times ($\mathrm{i}=1, \ldots, 4$) if, and only if, $C \in \tau_{2 i}, i=1, \ldots, 4$. We compute $\mu\left(\mathcal{N}_{22}\right)$ observing that τ_{22} is the union of two congruent trapeziums with bases of lengths $a-\frac{4 r}{\sqrt{3}}$ and $a-\frac{6 r}{\sqrt{3}}$ and height r and a surface given as the difference between the area

Figure 4.
of a trapezium with bases of lengths $a-\frac{4 r}{\sqrt{3}}$ and $a-\frac{6 r}{\sqrt{3}}$ and height r, and the area of a semicircle of radius r and angle $\frac{\pi}{3}$. Then

$$
\begin{equation*}
\mu\left(\mathcal{N}_{22}\right)=\text { area } \tau_{22}=3 a r-\frac{15}{\sqrt{3}} r^{2}-\frac{\pi}{2} r^{2} . \tag{21}
\end{equation*}
$$

The sets τ_{24} is the union of three congruent rhombs of side $\frac{2 r}{\sqrt{3}}$ and a semicircle of radius r. Then

$$
\begin{equation*}
\mu\left(\mathcal{N}_{24}\right)=\text { area } \tau_{24}=\left(2 \sqrt{3}+\frac{\pi}{2}\right) r^{2} \tag{22}
\end{equation*}
$$

We observe that the circle never intersects the sides of the lattice \mathcal{R}_{2} once or three times. From formulas (4), (5), (21) and (22) we have the probabilities (18), (19) and (20).

Considering the lattice \mathcal{R}_{2}, we denote by $p l_{2 i},(\mathrm{i}=1,2,3,4)$ the probability that the test body intersects i sides of the lattice.

Theorem 5. If $r<a \frac{\sqrt{3}}{6}$, the probabilities that a circle \boldsymbol{C} of constant radius r, uniformly distributed in a bounded region of the plane, intersects, i sides ($i=1,2,3,4$) of the lattice

Figure 5.
\mathcal{R}_{2}, are respectively

$$
\begin{gather*}
p l_{21}=4 \sqrt{3} \frac{r}{a}-\left(20+\frac{2 \sqrt{3} \pi}{3}\right)\left(\frac{r}{a}\right)^{2}, \tag{23}\\
p l_{22}=\left(8-\frac{2 \pi \sqrt{3}}{3}\right)\left(\frac{r}{a}\right)^{2} \tag{24}\\
p l_{23}=0 \tag{25}\\
p l_{24}=\frac{4 \sqrt{3} \pi}{3}\left(\frac{r}{a}\right)^{2} . \tag{26}
\end{gather*}
$$

Proof. With the same notations as theorem 1, as in figure 5, the test body intersects i sides ($\mathrm{i}=1, \ldots, 4$) of the lattice \mathcal{R}_{2} if, and only if, $C \in \tau l_{2 i}, i=1, \ldots, 4$. We compute $\mu\left(\mathcal{N}_{21}\right)$ observing that τl_{21} is equal to τ_{22}. The set τl_{22} is the union of six congruent equilateral triangles of sides $\frac{2 r}{\sqrt{3}}$ minus three circular sector of radius r and angle $\frac{\pi}{3}$. Then

$$
\begin{equation*}
\mu\left(\mathcal{N}_{22}\right)=\operatorname{area} \tau l_{22}=\left(2 \sqrt{3}-\frac{\pi}{2}\right) r^{2} . \tag{27}
\end{equation*}
$$

Finally, the set τl_{24} is the union of three congruent circular sectors of radius r and angle $\frac{\pi}{3}$, and the area of a semicircle of radius r. Therefore

$$
\begin{equation*}
\mu\left(\mathcal{N}_{24}\right)=\text { area } \tau l_{24}=\pi r^{2} \tag{28}
\end{equation*}
$$

We observe that the circle never intersects the sides of the lattice \mathcal{R}_{2} once or three times. From formulas (4), (5), (27) and (28) we have the probabilities (23), (24), (25) and (26).

Corollary 6. The probability that a circle \boldsymbol{C} of constant radius $r<a \frac{\sqrt{3}}{6}$ intersects one of the sides of the lattice \mathcal{R}_{2} is

$$
\begin{equation*}
p=\frac{12}{\sqrt{3}} \frac{r}{a}-12\left(\frac{r}{a}\right)^{2} \tag{29}
\end{equation*}
$$

Proof. Taking into account that $p=p l_{11}+p l_{12}+p l_{13}+p l_{16}$, formulas (23), (24) and (26) give the probability (29).

References

[1] A. Duma and M. Stoka, "Problemi di tipo Buffon con intersezioni multiple per reticoli di triangoli equilateri", Pub. Ist. Stat. Univ. Paris 51, Fasc. III, 3-15 (2007).
[2] A. Duma and M. Stoka, "Problems of Buffon type with multiple intersections for lattices of parallelograms", Rend. Circ. Mat. Palermo, serie II, Tomo LV, 241-248 (2006).
[3] M. Pettineo, "Problemi di probabilità geometriche per reticoli triangolari nel piano euclideo", Rend. Circ. Mat. Palermo, serie II, Suppl. 38, 89-96 (1995).
[4] H. Poincaré, "Calcul des probabilités" (Carré, Paris, 1912), ed. 2.

[^0]* To whom correspondence should be addressed | e-mail: vittoria.bonanzinga@unirc.it

Presented 25 November 2009; published online 20 September 2010

[^1]
[^0]: a Università degli Studi di Reggio Calabria
 Dipartimento di Informatica, Matematica, Elettronica e Trasporti
 Via Graziella, Feo di Vito
 89100 Reggio Calabria, Italy

[^1]: © 2010 by the Author(s); licensee Accademia Peloritana dei Pericolanti, Messina, Italy. This article is an open access article, licensed under a Creative Commons Attribution 3.0 Unported License.

